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A cylindrical shell is related to structural elements which are used extensively. 
Therefore, calculation of its local strength has received considerable attention. The most 
studied stressed state is with shell loading over a rectangular area and section of the 
coordinate line [1-3]. There is much less information for strength analysis of a shell in 
the zone of a circular area of loading. The first closed equations for calculating bending 
moments under normal force in the center of a circle were obtained in [4]. Later these 
values were represented by a series in MacDonald complex argument functions [5-7] which made 
it possible to expand the range of their application into shells of other shapes. In order 
to compute forces and moments in panels of zero and positive curvature power series with a 
logarithm were suggested in [8]. By cutting off these expansions simple asymptotic equa- 
tions were given in which shell size and the area of loading were considered, and a rule was 
also given for external load distribution. Distribution density is prescribed by a power 
relationship with arbitrary indices. By altering this it is possible to obtain both regular 
and singular distributions. However, the application limits for the asymptotic expressions 
obtained remained unknown. 

Closed equations are suggested in this work for calculating bending moments and tangen- 
tial forces, which is important in complete determination of normal stresses at the outer 
and inner surfaces of the shell. Calculation of them is reduced to tabulated Thomson func- 
tions. Apart from uniform distribution consideration was given to a parabolic load distri- 
bution with a zero pressure value at the contour of the area. Simple asymptotic equations 
are given for calculating forces and moments, and limits of their applicability were estab- 
lished. A comparison with the numerical results of other authors is given. It is shown 
that the local stressed state of infinitely long shells is determined by one dimensionless 
similarity parameter. This makes it possible to simplify universal curves for designing 
shells of different thickness and diameters loaded over circular areas of different radii. 
Stress determination at the most critical point (center of the area) with a prescribed dis- 
tribution density for load is reduced to using four of these curves. 

In analyzing the local stressed state we start from equations for four thin elastic 
isotropic shells with a large variability index [9]. The area of loading is assumed to be 
quite distant from the ends of a thin-walled body when it is possible to ignore their effect 
on the value of local stresses. Under these conditions the study is carried out conveniently 
by the method of two-dimensional Fourier transforms. The solution obtained will not be 
periodic over the circular coordinate. However, this does not give large errors in view of 
the rapid decrease in solutions with respect to this variable [i0]. In favor of these ap- 
proximate solutions is the conclusion made in comparing them with accurate solutions in [ii]. 

In order to calculate tangential forces t I and t 2 and bending moments m I and m2 at the 
center of a circle with uniformly distributed force P by the method of integral Fourier 
transforms quadratures have been obtained [8] 

m l - -  AI - I - vA~ ,  m2 = A 2 q - v A 1 ;  (1) 

t~51i + t252j + A~51~ + A25~I, = -- ~ [b4B2~ 2 (~251j + -- 

(2) 
b"=  12(t--v2) h-2R~ 2. 
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here R 2 and h are shell radius and thickness; v is Poisson's ratio of its material; q = 

P(2~r) -l is distribution density for external force P over a circle of radius r; J0(z) 

is first-order Bessel function of a zero series; ~mj and 6nk are Kronecker symbols; 
m = i, 2; n = i, 2. 

We substitute in (2) variables ~ and q for ~ and (P assuming ~ = ~ cos% ~ = u sin~. 
In new variables the proper integral with respect to y is expressed in terms of a MacDonald 
function K0(z) [12]: 

i J"(V")? d ~ =  K o ( ] / T b r c o s r  i =  ]/-----7t. 
73 ~_ ib ~ c o s  ~ 

0 

I n t e g r a t i o n  w i t h  r e s p e c t  t o  r i s  a l s o  r e d u c e d  t o  t a b u l a t e d  i n t e g r a l s  [12]  

K 0 (z cos ~) d~ = ~ I 0 (z) K.  (z), K0 (z cos @ cos 2~d~ = - -  2 ~ (z) K~ (z), 

i n  w h i c h  I n and  K n a r e  m o d i f i e d  B e s s e l  f u n c t i o n s  o f  t h e  p o w e r  n .  

As a r e s u l t  o f  t h i s  f o r c e s  and  momen t s  a t  t h e  c e n t e r  o f  t h e  c i r c l e  a r e  r e p r e s e n t e d  by  
t h e  e x p r e s s i o n s  

tl,2 = V'~(I  - v ~) qr Im [Io (at) K o (at) -4- I x (ar) K 1 (ar)], 
h 

"" ' V~. ( 3 )  
A I,~ = ~- ]le [I o (at) K o (at) ~- 11 (at) K I (ar)], a = ~ b 

T h e s e  a r e  f u n c t i o n s o f  t h e  e f f e c t  f o r  d e t e r m i n g  t j  and  mj a t  t h e  m o s t  c r i t i c a l  p o i n t ,  i . e . ,  
t h e  c e n t e r  o f  a c i r c u l a r  a r e a  o f  l o a d i n g  by  a d l s t r i b u t e d  n o r m a l  f o r c e .  W i t h  u n i f o r m  d i s -  
t r i b u t i o n  of force over a Circle of radius R we have to integrate them from zero to R, which 
it is easy to carry out by means of the expressions 

R 

/t2 [Io (aB) K o (aB) "6 I~ (aB) K z (aB)], r i  o (at') K o (ar) dr = -~- 
0 

R 

,I rI~ (at) K~ (at) dr = 7 I~ (aR) K~ (aB) "6 I ,  (aFt) Ks (all) - -  ~ . 

o 

Then the real and imaginary parts should be separated by using the relationships [12] 

f n ( x V i )  = e - ~ u ~  [bern(x) + i bein(x)],  Kn(x]/- i )  - -  e~i/'~[kerT~(x) -? i kei,~(x)] b e t w e e n  m o d i f i e d  B e s s e l  

f u n c t i o n s  o f  t h e  c o m p l e x  a r g u m e n t  and  Thomson f u n c t i o n s .  As a r e s u l t  o f  t h i s  f o r c e s  and  
moment s  a t  t h e  c e n t e r  o f  t h e  c i r c l e  w i t h  u n i f o r m  p r e s s u r e q  = P(~R2)  -1  a r e  p r e s e n t e d  i n  
c l o s e d  f o r m  

tl,2 P V 3 (I --v~) [BoT ~ + CoKo + B1T1 + 

"4- C1K 1 "4- (B1T1 "6 C1K1 - -  BoT2 - -  CoK2 "6 8b-2R-2) ] ,  (4) 

A1. 2 = ~-~P [BoK ~ - -  CoT o + B1K1 - -  C1T i ~ (BIK1 - -  CIT 1 + CoT-~ - -  BoK=) ]. 

Here and below use is made of abbreviated notations for Thomson functions B m = berm(P), 

C m = beim(P) , Km = kerm(P) , T m = keim(P), p = bR/2. 

We note that expressions for bending moments in the form of (i) and (4) are suggested 
in [4] by integrating fundamental solutions for a concentrated force. We obtain them by a 
simpler method. From a physical point of view distributions are more real with a zero value 
of pressure at the contour of the area. Therefore, we stop at a parabolic distribution 
f(r) = q(l - r2R-2), q = 2P(~R2) -I 

In order to calculate tj and mj expression (3) should now be integrated from zero to R 
with load f(r). This does not cause any difficulties since 
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TABLE 1 

It I G 

From curves 
in [6, 7] 

i 1,72 2,05 
2 t,30 i,60 
4 0,86 t,18 

I, 11. 17- J, I s, 
From-Eq-s. I} x Fr-omcu~ves 
(I) and (5)} I l in [6, 7] 

n 
i,70 2,0~H6 0,63 0,93 
t,28 t,6t II 0,50 0,78 
0,86 1,t9 10 0,38 0,67 

h I ]-~ 
From Eqs .  
(1) and (5) 

0,64 0,95 
0,49 0,79 
0,40 0,68 

R 

; B~[ t 1 (aB)Ko(aI  O -F r3Io (at) K o (ar) dr = - i f -  I o (aPt) K o (aB) + S~ 1 
0 

I I (aB) K s(aB)], + I x (aB) K s (all) -- 7-R ~ 

R 

r~Ix (ar) K x (ar) dr = -6- [Ix (aB) K x (aB) + I,, (aB) K,~ (aB)]. 

0 

After calculating the quadratures and separating the imaginary and real parts we find 

t , . . , .  = 

B~ -- C~ ]/~ bR ( B j G  -- CIT2 + Cxli2 + BxTz) • + CoK1 + 

• BxT 1 + C1K x - -  BoT 2 - -  CoK 2 + -Eft (llxK~ --  CxT,2 + B~T2+ CxK., ) + 12 (bB) -2 , 

P { ' t (BoK ~ Ax,2 = -~ BoKo --  Co] o + BxKx --  C1"1'1 + ~ - -  CoT'~ - -  CoKx --  

__ BoT~ ) i (B1K ~ -  C1T2__ C1K2 __ BxT~ ) 
-V~ bR 

-T [ B x K 1 - - C I T , - -  BoK2 + CoT2 + ~ ( B x K 2 - - C ,  T z - -  B1T2--CxK2)]}. 

o (P V~3 (1 v'*)) -1 t i and moments mj ~ Zmj We introduce dimensionless forces tj= 2gh -- = P- (j = 
- 0 i, 2). From the solutions constructed it follows that with prescribed v values of mj and 

tj ~ are only determined by one dimensionless parameter p = bR/2, i.e., the similarity para- 
. . . .  0 0 meter, since shells with different R2, h, R wlth fixed p have identical tj and mj . There- 

fore, in the case of long cylindrical shells when it is possible to ignore the effect of 
. . . .  1 0 0 ends on the distribution of local stresses, graphlca dependences of tj and mj on p take a 

universal character and they may be used for the design of shells with different R2, h, and 
R. These dependences are presented in Figs. 1 and 2 (solid lines relate to uniform load 
distribution, and broken lines to parabolic distribution with v = 0.3). 
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It can be seen that for fixed values of p a parabolic distribution is more critical, 
i.e., it leads to greater stresses at the center of the circle. Tangential force t z appears 
to be greater than t2, which was also noted with numerical summing of a trigonometrical 
series for a square loading area [2]. With an increase in p the ratio of moments mz/m2 tends 
toward v. With p = 4 it differs insignificantly from 0.3. This ratio is adopted in semi- 
momentless shell theory [2], and therefore it is used for calculations with p > 4. 

�9 0 0 . 
With small values of p calculatzon of tj and mj may be carrzed out by means of ele- 

mentary equations without drawing on tables [13] of Thomson functions. These equations are 
obtained by cutting off power series in the solutions in [8]. With uniform distribution of 
the external force the first two terms of the expansion give 

= -- In y -- (0.3456 + t ~  { 4 + - ~ i  p" [ (2T  t) t' _ 0.0772)1], 

I [2 .~+0 .1544  1 ~(2!:1) ] l ) - l A i , 2  ~ - -  ~-~ In 4- 16 P" " 

In  t h e  c a s e  o f  a p a r a b o l i c  d i s t r i b u t i o n  in  t h e  t w o - t e r m  a p p r o x i m a t i o n  we f i n d  

(5) 

P - I A ~ . ,  ~ In ~ 0.3456 q- I a (2 q; 1) |)2 
= - -  ~ - -  2 4  " 

�9 0 0 Compar i son  o f  t h e  r e s u l t s  f o r  c a l c u l a t i n g  m. and t .  by a s y m p t o t i c  e q u a t i o n s  shows J 
t h a t  w i t h  bR ~ 1 .8  t h e  e r r o r  o f  e l e m e n t a r y  e q u a t z o n s  does  n o t  e x c e e d  t h e  e r r o r  f o r  t e c h n i c a l  
s h e l l  t h e o r y  ( o f  t h e  o r d e r  o f  hR2 -1 compared  w i t h  u n i t y ) .  T h e r e f o r e  i n e q u a l i t y  bR < 1 .8  
s h o u l d  be c o n s i d e r e d  as  t h e  r e g i o n  f o r  p e r m i s s i b l e  u s e  o f  a s y m p t o t i c  e q u a t i o n s  w i t h o u t  f o r -  
g e t t i n g  t h a t  c a l c u l a t i o n  by s h e l l  t h e o r y  i s  o n l y  p o s s i b l e  in  p r i n c i p l e  w i t h  R ~ 0 . 6 8 h  [5 ,  6 ] .  

In  c o n c i u s i o n  we compare  t h e  r e s u l t s  o f  c a l c u l a t i o n s  by (1 )  and (5 )  w i t h  c a l c u l a t i o n s  
in  a compute r  [6 ,  7] w i t h  v = 0 . 3 ,  R2h -z  = 100, R = xh.  Shown in  t h e  s eco n d  and t h i r d  c o l -  
umns o f  T a b l e  t a r e  v a l u e s  o f  f .  = 6m. bo r rowed  f o r  d i f f e r e n t  x f rom c u r v e s  in  [6 ,  7 ] ,  and 3 3 
in  t h e  f o u r t h  and f i f t h  columns t h e r e  a r e  v a l u e s  o f  f j  c a l c u l a t e d  by Eqs .  (1 )  and ( 5 ) .  De- 
v i a t i o n s  o f  numbers  o b t a i n e d  by t h e  two methods  a r e  s m a l l  and a r e  due t o  a c e r t a i n  e x t e n t  t o  
t h e  e r r o r  in  g r a p h i c a l  i n f o r m a t i o n .  C o n s e q u e n t l y ,  t h e  a s y m p t o t i c  e q u a t i o n s  p r o p o s e d  p r o -  
v i d e  a c c e p t a b l e  a c c u r a c y  and t h e y  a r e  c o n v e n i e n t  f o r  e n g i n e e r i n g  c a l c u l a t i o n s  in  t h e  r a n g e  
o f  change  in  s i m i l a r i t y  p a r a m e t e r  i n d i c a t e d .  I t  i s  n o t e d  t h a t  a p p r o x i m a t e  c l o s e d  s o l u t i o n s  
may a l s o  be o b t a i n e d  by t h e  s y n t h e s i s  method [14] f o r  t h e  s h e l l  s t r e s s e d  s t a t e .  
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COMBINATION OF RAYLEIGH AND DYNAMIC EDGE EFFECT METHODS 

IN STUDYING VIBRATIONS OF RECTANGULAR PLATES 

G. A. Krizhevskii UDC 539~ 

The dynamic edge effect method (DEEM) suggested by Bolotin has been used extensively in 
solving problems of natural vibrations for elastic rectangular plates and also for structures 
consisting of them [i]. Generally speaking the method intended for finding high natural 
frequencies and forms under kinetic boundary conditions also gives good results for low forms 
of vibration [2]. With existence of static conditions at the contour the accuracy of deter- 
mining low natural values decreases [3]. The error of the DEEM is connected with the fact 
that the solution constructed by means of it does not satisfy the original problem in the 
vicinity of boundaries. One possible way for refining the method is construction of angular 
boundary layers [4], and another is combination of the asymptotic method with variation 
methods. Combination of the DEEM with the Rayleigh-Ritz method was the subject of [5], al- 
though there only the case of kinematic boundary conditions was considered, and therefore 
it is difficult to check the efficiency of this approach. Equations obtained in [5] for 
natural frequencies are only applicable for a square plate clamped along all edges. Of 
particular interest with this combination is estimation of the first approximation (Rayleigh 
equation) since in this case it is possible to obtain an expression for natural frequency in 
closed form. 

In the present work an asymptotic expression is obtained by combining Rayleigh and DEEM 
methods for the frequency of natural vibrations suitable for arbitrary unchanged conditions 
at the boundary along the rectilinear edge, and the efficiency of this approach has been 
studied. 

We consider vibration of an elastic rectangular (0 ~ x I ~ al, 0 ~ x 2 ga, 2) plate. 
According to Rayleigh the expression for frequency parameter ~ has the form 

)-" )j % \31/2 
= axa2 9h/D .[ ~ (w~l + w~22 + 2vw,llw,iz + 2 (1 -- v)w~12) dxldx w~dxadx2 . (1)  

oo 

H e r e E  = ~alai(ph/D)l/2; w i s  n o r m a l  d e f l e c t i o n ;  v i s  P o i s s o n ' s  r a t i o ;  w i s  n a t u r a l  f r e q u e n c y ;  
h i s  t h i c k n e s s ;  p i s  m a t e r i a l  d e n s i t y ;  D = E h 3 / [ 1 2 ( 1  - 9 2 ) ] ;  E i s  Y o u n g ' s  m o d u l u s ,  

The expression for the function of deflection obtained by means of the DEEM [I] is 
written as 

/ (X I, Xi) ~ Sl(Xl) sin (~1x2 -[- 12) ~- Si(xi) sin (~1xl + ll); ( 2 )  

Si(xi) = sin (~ixi -{- li) ]-Cilexp(a~x~) -t- C12 exp (--aixl) (i ---- 1, 2). 

We take the expression for deflection w(xz, xi) in the form 

(3) 

w ( x .  x~) = &(x~)Si(x~). (4) 
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